Detector Support Group Report Tuesday, April 26, 2016

Amrit Yegneswaran

Contents

I. Introduction

- i. Genesis
- ii. Charge
- iii. Staff
- iv. Capabilities
- v. Contributions
- vi. Conclusion

II. Current projects

- i. Hall B Gas System
- ii. HDICE
- iii. Hall D Solenoid
- iv. Hall B Magnets
- v. Conclusion

Introduction: Genesis

• DSG formed January 2014.

- Initial staff from Hall B and Hall D.
- In all, 12 staff members.
- DSG reports to Dr. Patrizia Rossi.

Fortiter in re, suaviter in modo.

• First convening of DSG: March 13th, 2014.

DSG Meeting Minutes – 3/13/14 DSG members introduced themselves. Patrizia stated the scope and responsibilities of the group.

Introduction: Charge

- Support tracking detectors in halls **B** and **D**.
 - DC and SVT
 - FDC and CDC
- Expanded Scope.
 - Shortly after first meeting, Patrizia advised DSG to:
 - Support any detector and/or magnets in halls B and D.
 - Set priority to be Hall D and CLAS 12 upgrade.

Introduction: Staff

Antonioli, Mary Ann

Campero, Pablo

Lemon, Tyler

Arslan, Sahin

Hoebel, Amanda

McMullen, Marc

Bonneau, Peter

Jacobs, George

Sitnikov, Anatoly

Eng, Brian (Deputy)

Leffel, Mindy

Introduction: DSG Capabilities

- Design
 - SVT, Magnet electronics, DC electronics, DC stringing and assembling, Gas Systems, Hardware Monitoring System, CCTV system, Slow Controls Systems
- Instrumentation
 - SVT, DC, Gas Systems, CCTV System, Magnets, Hardware Monitoring System, Slow Controls Systems
- Operations
 - SVT, DC, CCTV System, Hardware Monitoring System

Introduction: DSG Capabilities

• Electronics

 <u>Design and Development</u> of test stations and fixtures for detector instrumentation and power supplies, multilayer PCBs, flex boards, <u>test and measurement</u> of electronic components and instruments, <u>fabrication</u> of equipment, <u>programming</u> PIC microcontrollers, FPGAs

• Hardware

Wire-bonding, Soldering, Cable and component fabricating, Optical fiber polishing, 3-D printing, Machining

Software

 C, C++, Python, JAVA, ROOT, Data basing software (SQLite and Oracle), Mathematica, GEANT, Adobe CS6, EPICS, AutoCAD, NX (solid modelling), PLCs, LabVIEW, PIC Microcontrollers, Xilinx, Altera

Introduction: Contributions to Hall B

• Silicon Vertex Tracker

- All phases: from design to operations

• Drift Chambers

- Fabrication, instrumentation, testing, gas system, and operational support

• Central Time of Flight

- PMT amplifier boards (~100), disassembly and reassembly

Low Threshold Cerenkov Counter

 Mirror testing, Winston Cone Testing, Testing program, analysis, gas system, leak check, and documentation

• High Threshold Cerenkov Counter

- Prototype gas system
- Gas System
 - DC, LTCC, HTCC, SVT, MicroMegas, RICH, Forward Tagger

• Torus and Solenoid Magnets

- Testing PLC codes
- HDICE
 - RF cable, RF Box, Rotation of Target Polarizatiion, Mathematica upgrade
- MicroMegas
 - Gas System
- RICH
 - Gas System and assembly aspects

Introduction: Contributions to Hall D

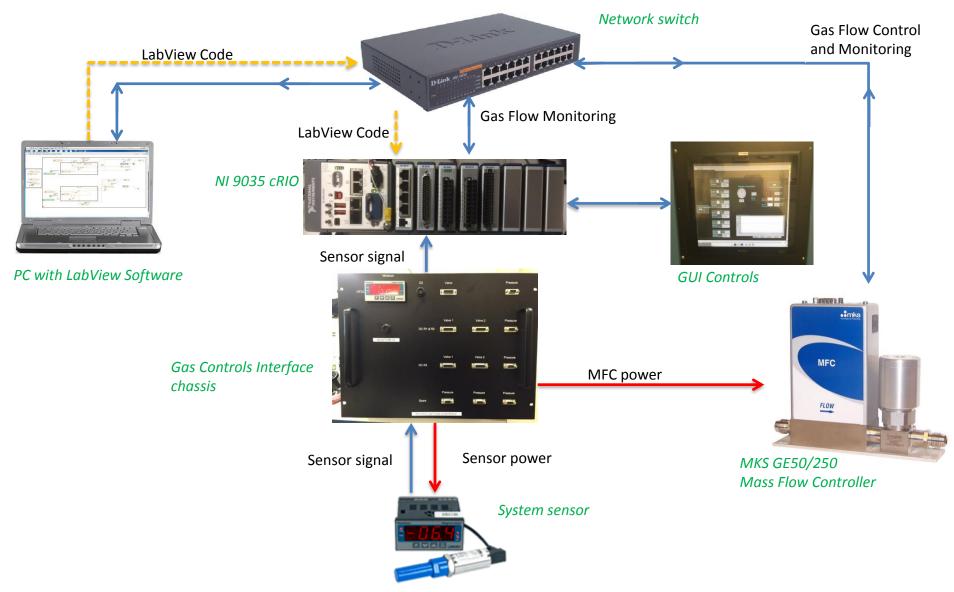
• PLC programs

- Solenoid, Pair Spectrometer, BCAL, FCAl, CDC, FDC, Start Counter
- Solenoid
 - PXI based Fast DAQ System
- Pair Spectrometer
 - Power Supply, Cabling, added temperature monitoring
- BCAL
 - Voltage and environmental monitoring, added new heartbeat code
- FDC
 - Implemented gas system alarms
- CDC
 - Implemented gas system alarms
- FCAL
 - HV supply debugging
- Start Counter
 - Implemented heartbeat code
- Tagger
 - Debugged HV reset issues
- Target
 - Configured/tested temperature set-point alarm
- Slow controls
 - Tested magnet vapor-cooled lead flow controls
 - Voltage tap tag data basing in EXCEL
- Gas System
 - Programmed controls for pressure flow system

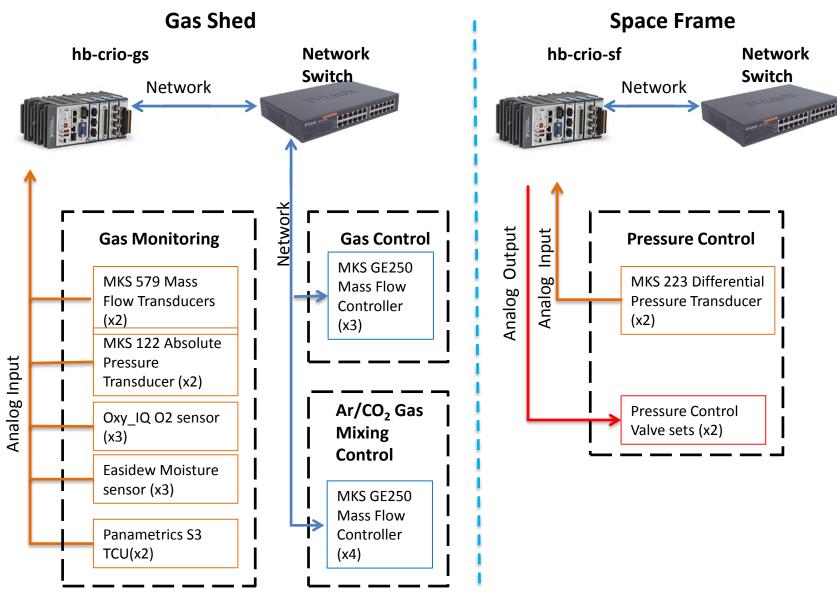
Introduction: Conclusion

- Diverse contributions to halls B and D.
 - Design, Instrumentation, Operations, Electronics, Software, and Hardware
- Staff exceptionally talented, *d*ynamic, *s*killed and *g*ifted.

Group loves the work


<u>and</u>

loves to work and contribute as a team.


Current Projects I. Hall B Gas System Team: DSG

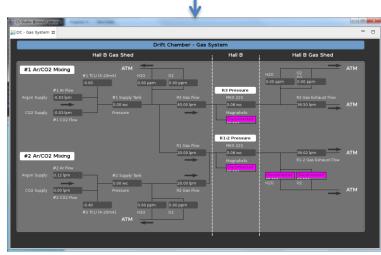
- Designing, developing, and implementing Gas System in Hall B.
 - DC, SVT, LTCC, HTCC, MicroMegas, RICH, and Forward Tagger
- Designing, developing, and implementing Gas System in EEL and in TEDF for testing detectors.

Hall B Gas System: Generic Layout

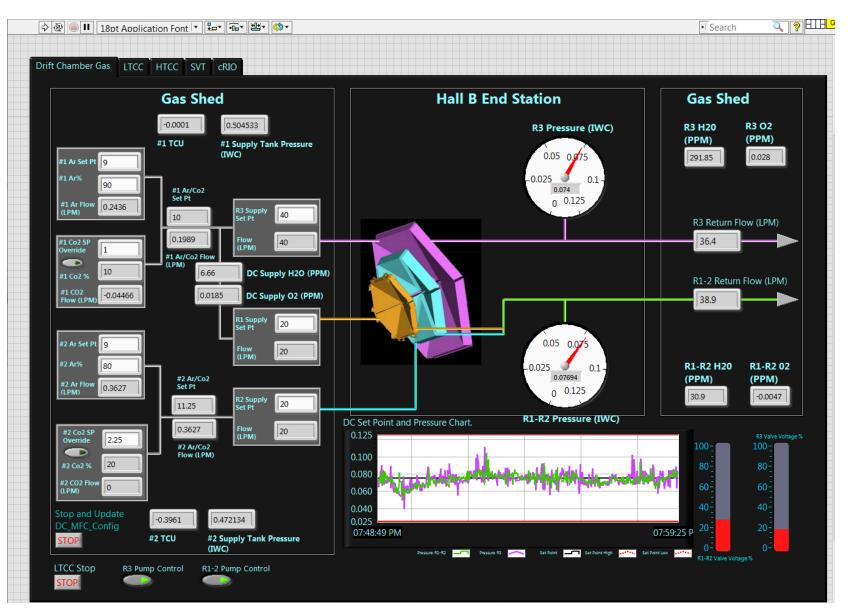
Hall B Gas System: DC Gas Controls

Hall B Gas System: Layout

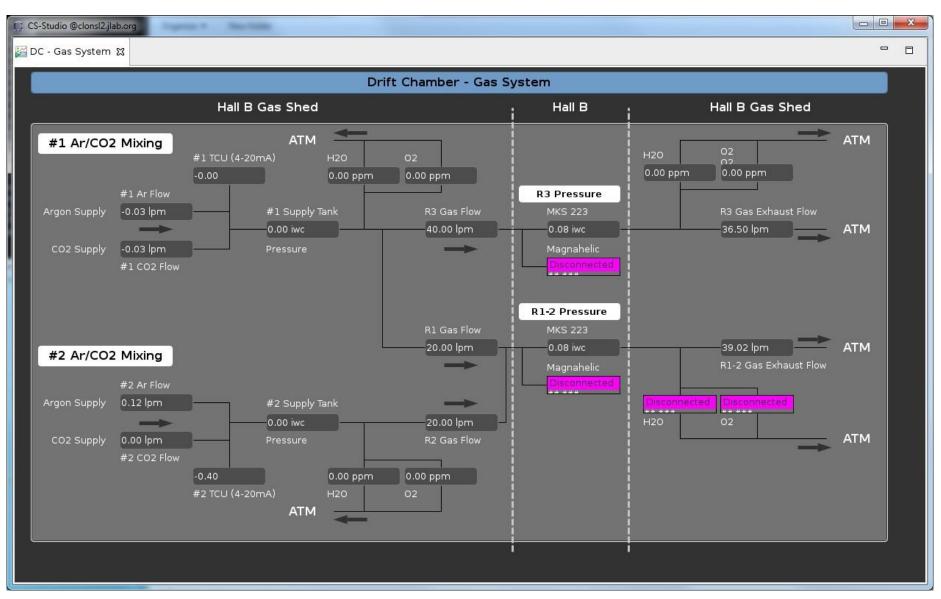
National Instruments compact RIO DAQ and controls.


- Hall B's gas system controlled by three individual setups. (GS, SF, FC)
- 2. Setups work in concert over slow controls network (160).
- 3. Provide *operational control* in Hall B gas shed and *monitoring data* to EPICS system in counting house.

Process Variable to EPICS


National Instruments LabView software in gas shed.

Custom controls interface chassis with touchscreen monitor



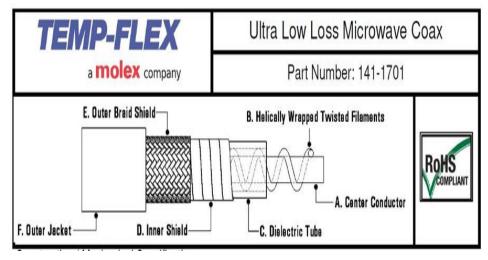
EPICS monitoring screen in counting house.

Hall B Gas System: DC Gas Controls GUI

Hall B Gas System: DC Gas EPICS Monitoring Screen

Detector Support Group Fortiter in re, suaviter in modo

Hall B Gas system: Status


	Location			Ha	ardware			
#		Detector	Gas	Piping	Instrumentatio n	Software	Deployed	Tested
1		DC	Ar/CO ₂	\mathbf{X}^{\dagger}	\checkmark	~	\checkmark	X
2	н	HTCC	N_2	\mathbf{X}^{\dagger}	X	~	\checkmark	X
4	а	LTCC	C_4F_{10}	\mathbf{X}^{\dagger}	~	~	X	X
5	I	SVT	N_2	\mathbf{X}^{\dagger}	X	✓	\checkmark	X
6	I	RICH	N_2	$\mathbf{X}^{\dagger\dagger}$	X ^{††}	<mark>X^{††}</mark>	$\mathbf{X}^{\dagger\dagger}$	$\mathbf{X}^{\dagger\dagger}$
7	В	MicroMegas	Ar, C_4H_{10} , C_2H_6 , $\frac{Ne^{\dagger\dagger}}{CF_4}$, CF_4	X ^{††}	X ^{††}	X ^{††}	X ^{††}	<mark>X^{††}</mark>
8		Forward Tagger	N_2	X	X	X	X	
9		SVT	N_2	~	~	~	~	✓
10	E	MicroMegas V.1	Pre-mix Ar/C ₄ H ₁₀	~	~	N/A	N/A	N/A
11	EL	Micromegas V.2	Mix Ar/C ₄ H ₁₀	X	X	N/A	N/A	N/A
12		Forward Tagger	N ₂	~	~	N/A	N/A	N/A
13	TEDF	HTCC	N_2	\checkmark	\checkmark	~	\checkmark	\checkmark

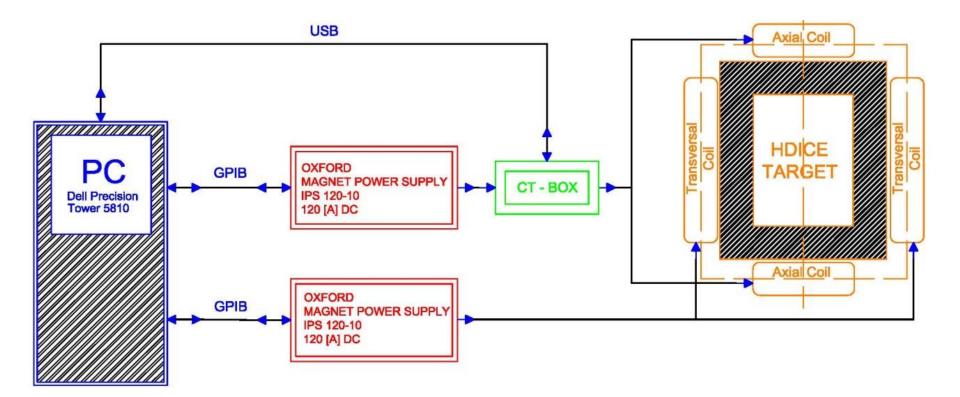
† Waiting on Hall B Engineering. **††** Waiting for more information.

Current Projects II. HDICE Peter, Brian, Mary Ann, Mindy, Sahin, Anatoly

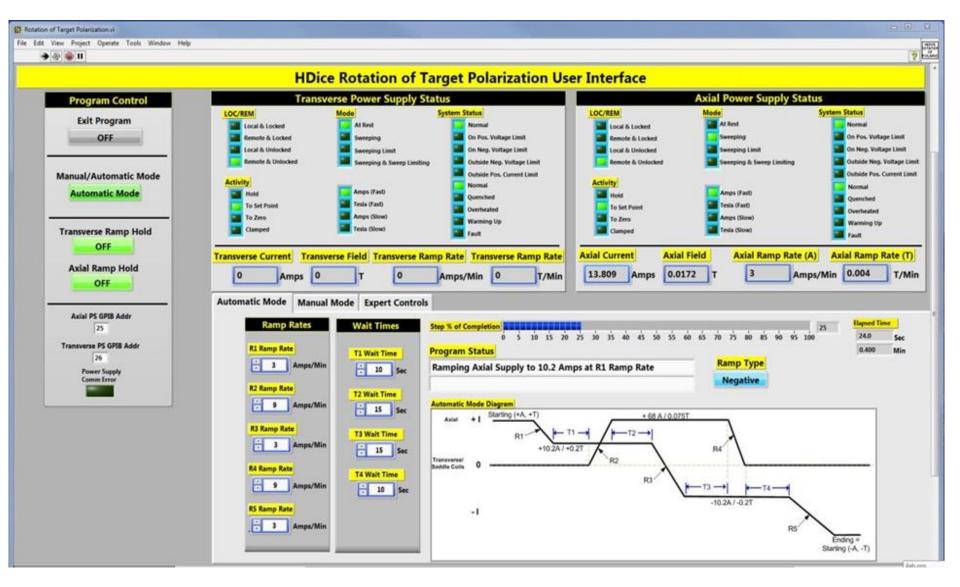
Hardware

• Researched flexible air core RF cables, tested, and terminated them with "N" plugs.

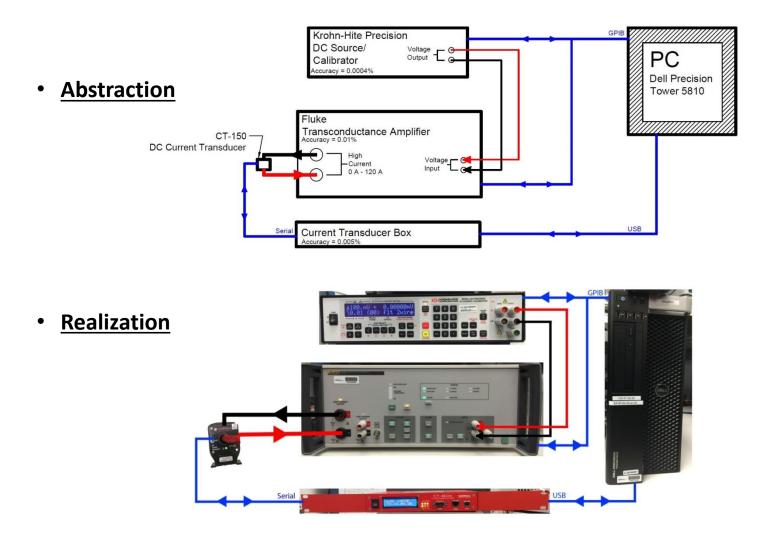
Designing and fabricating RF Attenuation/Switching box


Current Projects II. HDICE

<u>Peter, Brian, Mary Ann, Tyler, Amanda, Pablo</u> <u>Software</u>

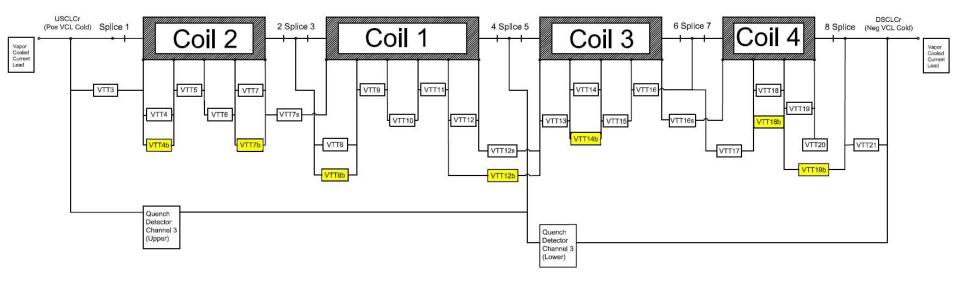

- Development of rotation of target polarization program.
- Design and development of calibration system for measuring current.

HDICE: Rotation of Target Polarization Setup


Hardware configuration schematic

HDICE: Rotation of Target Polarization GUI

HDICE: Current Transducer Box Calibration Setup


Linear fit of data using Mathematica: $I_{\text{Meas.}} = 0.99997 I_{\text{Set}} + 0.00268$; $(I_{\text{Set}} - I_{\text{Meas.}})/I_{\text{Set}} \rightarrow 0.00003$ for Iset >> 0.0028

Current Projects III. Hall D Solenoid Peter, Brian, Tyler, Amanda, Pablo

- Databased in SQLite, Excel voltage tap measurements of solenoid coils.
- PLC Support
 - Documenting PLC system.
 - Generated Allen Bradley report.
 - Verifying report with existing hardware.

Hall D Solenoid: Voltage Tap Tags

• Voltage Tap Tag Schematic

Hall D Solenoid: Excel

• Voltage Tap Measurements

Coil 2

Voltage Drop Readings on Voltage Taps

	U	12/3/2015 5.0V 0.3A		Date Voltage Current		Voltage Tap Pairs
• •	Reading	Drop Difference g Resistor	Voltage Tap designation	Voltage Reading	Drop Difference	Difference
Boxes			Measurements @ Vo	oltage Taps T	est Box	
USCLW (Pos. VCL Warm)	2.8046		USCLW (Pos. VCL Warm)	2.8044		-0.0002
		-0.0245			-0.0256	
USCLC (Pos. VCL Cold)	2.8291		USCLCr (Pos. VCL Cold)	2.8300		0.0009
SC2 VT1	2.8290	0.0001	SC2 VT1r	2.8291	0.0009	0.0001
502_111	2.0250	0.3388	502_7111	2.0251	0.3294	0.0001
SC2_VT2	2.4902		SC2_VT2r	2.4997		0.0095
		0.1683			0.1779	
SC2_VT3	2.3219		SC2_VT3r	2.3218		-0.0001
SC2 VT4	2.1345	0.1874	SC2_VT4r	2.1341	0.1877	-0.0004
002_111	2.1313	0.2760		2.1311	0.2763	
SC2_VT5	1.8585		SC2_VT5r	1.8578		-0.0007

Hall D Solenoid: SQLite Database

• Voltage Tap Database in SQLite

🕅 🔁 🚄 f(x) 🛒 🖬 📑 🖬 Directo			ofile Database) 🔻										
oltage_taps.sqlite	▼ 5	Structure	Browse & Search	Execute SQL	DB Settings								
Naster Table (1)		TABLE	voltage taps	Searc <u>h</u>	Show	All				Add	Duplicate	Edit	Delete
ables (1)		rowid	Date	Test_Volta	Current	Voltage T	Voltage R.,	Dron Diffe	Voltage T	Voltage R.	. Drop_Diffe	Difference	Comments
> voltage taps	_	314	8/28/2015	10	3.1	USCLW (Po		Two contracts to only	USCLW (Po		N/A	0	No ground.
(iews (0)		315	8/28/2015	10	3.1	USCLC (Po	and a second		USCLCr (P		0.0003	-0.0006	No ground.
ndexes (0)		316	8/28/2015	10	3.1	SC2_VT1	-0.0025	-	SC2_VT1r	-0.0026	0.0023	-0.0001	No ground.
riggers (0)		317	8/28/2015	10	3.1	SC2_VT2	-0.5307	-	SC2_VT2r	-0.5396	0.537	-0.0089	No ground.
		318	8/28/2015	10	3.1	SC2_VT3	-0.829		SC2_VT3r	-0.829	0.2894	0	No ground.
		319	8/28/2015	10	3.1	SC2_VT4	-1.1338		SC2_VT4r	-1.1338	0.3048	0	No ground
		320	8/28/2015	10	3.1	SC2_VT5	-1.5828		SC2_VT5r	-1.5828	0.449	0	No ground
		321	8/28/2015	10	3.1	SSPL_VT6	-1.5847	-	SSPL_VT6r	-1.5847	0.0019	0	No ground
		322	8/28/2015	10	3.1	SC1_VT7	-1.5873		SC1_VT7r	-1.5873	0.0026	0	No ground
		323	8/28/2015	10	3.1	SC1_VT8	-2.4027	-	SC1_VT8r	-2.4022	0.8149	0.0005	No ground
		324	8/28/2015	10	3.1	SC1_VT9	-2.572		SC1_VT9r	-2.572	0.1698	0	No ground
	1	325	8/28/2015	10	3.1	SC1_VT10	-2.6838		SC1_VT10r	-2.6838	0.1118	0	No ground
		326	8/28/2015	10	3.1	SC1_VT11	-2.9915		SC1_VT11r	-2.9915	0.3077	0	No ground
		327	8/28/2015	10	3.1	SC1_VT12	-3.6443		SC1_VT12r	-3.6443	0.6528	0	No ground
		328	8/28/2015	10	3.1	in a state of the second second			SC3_SSPL13r		-0.0116	0.0001	No ground
		329	8/28/2015	10	3.1	SC3_VT14	-3.6345	0.0017	SC3_VT14r	-3.6345	0.0018	0	No ground
	12	330	8/28/2015	10	3.1	SC3_VT15	-4.4271	0.7926	SC3_VT15r	-4.4271	0.7926	0	No ground
		331	8/28/2015	10	3.1	SC3_VT16	-5.2479	0.8208	SC3_VT16r	-5.2479	0.8208	0	No ground
		332	8/28/2015	10	3.1	SC3_VT17	-5.3556	0.1077	SC3_VT17r	-5.3556	0.1077	0	No ground
		333	8/28/2015	10	3.1	SC3_VT18	-5.581		SC3_VT18r	-5.5581	0.2025	0.0229	No ground
		334	8/28/2015	10	3.1	SC4_SSPL19	10000000000		SC4_SSPL19r	Contraction of the second s	0.0249	0	No ground
		335	8/28/2015	10	3.1	SC4_VT20	-5.585		SC4_VT20r	-5.585	0.002	0	No ground
		336	8/28/2015	10	3.1	SC4_VT21	-6.142		SC4_VT21r	-6.142	0.557	0	No ground
		337	8/28/2015	10	3.1	SC4_VT22	-8.021		SC4_VT22r	-8.021	1.879	0	No ground
		338	8/28/2015	10	3.1	SC4_VT23	-9.659		SC4_VT23r	-9.659	1.638	0	No ground
		339	8/28/2015	10	3.1	SSPL_VT24	-9.66	0.001		-9.66	0.001	0	No ground
		340	8/28/2015	10	3.1	DSCLC (Ne			DSCLCr (N		0.003	0	SSPL_VT24
		341	8/28/2015	10	3.1	DSCLW (N			DSCLW (N		0	0	No ground
		4	1	Sec.	1202		and the second second	1	1			11.54	Into ground

Hall D Solenoid: PLC Support

Peter, Brian, Mary Ann, Tyler, Amanda, Pablo

- PLC Chassis 1 layout
 - Generated from Allen Bradley report

Chassis 1	Slot 0		Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7	Slot 8	Slot 9
	Power Supply 1756-PA72	Iso. 24 V Sequ. of Events Input 1756- IB16ISOE	lso. 24 V Sequ. of Events Input 1756-IB16ISOE	Analog Input 1756-IF16	EtherNet /IP 1756EN2T						
Bit/Channel 00		Spare	Spare	VTT #1	SC1_TP1	SC1_SG1	VTT #9	SC2_TP1	SC2_SG1	VTT #17	
Bit/Channel 01		MPS Relay 1 Phase Detector	Fast Relay 1 Vacuum SUM	VTT #2	SC1_TP2	SC_1SG2	VTT #10	SC2_TP2	SC2_SG2	VTT #18	
Bit/Channel 02		MPS Relay 2 A/C Overcurrent	Fast Relay 2 LHe Liquid Level	VTT #3	SC1 TP3	SC1 SG3	VTT #11	SC2 TP3	SC2 SG3	VTT #19	
Bit/Channel 03		MPS Relay 3 Water Flow	Fast Relay 3 DS Lead Flow	VTT #4	SC1 TP4	SC1 SG4	VTT #12	SC2 TP4	SC2 SG4	Spare	
Bit/Channel 04		MPS Relay 4 Overtemp String	Fast Relay 4 US Lead Flow	VTT #5	SC1 TP5	SC1 SG5	VTT #13	SC2 TP5	SC2 SG5	Spare	
Bit/Channel 05		MPS Relay 5 Slow Dump SUM	Fast Relay 5 DSCL Temp	VTT #6	SC1 TP6	SC1 SG6	VTT #14	SC2 TP6	SC2 SG6	Spare	
Bit/Channel 06		MPS Relay 6 Ground Fault	Fast Relay 6 DSCLr Temp	VTT #7	SC1 TP7	SC1_SG_T	VTT #15	SC2_TP7	Spare	Spare	
Bit/Channel 07		MPS Relay 7 CEBAF Panel	Fast Relay 7 USCL Temp	VTT #8	SC1 TP8	SC1 SG B	VTT #16	SC2_TP8	Spare	Spare	
Bit/Channel 08		MPS Relay 8 Fast Dump SUM	Fast Relay 8 USCLr Temp	Spare	SC1 TCR1	Spare	Spare	SC2 TCR1	Spare	Spare	
Bit/Channel 09		MPS Relay 9 E- Stop / Doors	Fast Relay 9 DSCL Voltage	Spare	SC1 TCR2	Spare	Spare	SC2 TCR2	Spare	Spare	
Bit/Channel 10		MPS Relay 10 Main Contactor	Fast Relay 10 USCL Voltage	Spare	SC1 TCR3	Spare	Spare	SC2_TCR3	Spare	Spare	
Bit/Channel 11		Slow Relay 1 VT Cable Intlck	Fast Relay 11 PLC Fast Dump	Spare	SC1_TCR4	Spare	Spare	SC2 TCR4	Spare	Spare	
Bit/Channel 12		Slow Relay 2 Cable Interlocks	Fast Relay 12 Quench Detector	Spare	SC1 TCR5	Spare	Spare	SC2_TCR5	Spare	Spare	
Bit/Channel 13		Slow Relay 3 PLC Watchdog	Fast Relay 13 Refigerator Monitor	Spare	SC1_TCR6	Spare	Spare	SC2_TCR6	Spare	Spare	
Bit/Channel 14		Slow Relay 4 PLC Slow Dump	Spare	Spare	SC1_TCR7	Spare	Spare	SC2_TCR7	Spare	Spare	
Bit/Channel 15		Spare	Spare	Spare	SC1_TCR8	Spare	Spare	SC1_TCR8	Spare	Spare	
		Wiring Schematic Page - 0110	Wiring Schematic Page - 0120	Wiring Schematic Page - 0107	Wiring Schematic Page - 0111	Wiring Schematic Page - 0112	Wiring Schematic Page - 0108	Wiring Schematic Page - 0114	Wiring Schematic Page - 0115	Wiring Schematic Page - 0109	27

Current projects IV. Hall B Magnets

Peter, Brian, Tyler

- 1. Y Test power supply PLC code with Danfysik Power supply.
- 2. Define/develop EPICS screen(s) for power supply status/control
- 3. Define/develop Cryo-EPICS screens for Distribution Can and Torus Service Tower.
- 4. Solenoid Bore Heater control (out of scope work ↔)
- 5. Define/develop EPICS screen for Solenoid Bore Heater Control (out of scope work ↔)
- 6. Coordinate checkout of Distribution Box PLC program after Distribution Box installation.

Current Projects: Conclusion

I. Hall B Gas System work progressing well.

- 1. PAC (cRIO) based controls and monitoring system has been developed and is being tested for:
 - 1. DC, LTCC, HTCC, SVT
- 2. Concerned about:
 - 1. Delays due to work coordination with Hall B Engineering
 - 2. Lead time for gases C_4F_{10} and Ne
 - 3. RICH, MicroMegas, Forward Tagger
 - No equipment purchased

II. HDICE work demanding, aggressive schedule.

- 1. Request for components for one rack end of Sept. 2016.
 - ✓ RF cable search and secure completed.
- III. Hall D Solenoid support going smoothly.
- **IV.** Hall B Magnet support work proceeding as well as it can.
 - 1. Work Schedule decided by Ruben Fair of magnet group.
 - ✓ Test power supply PLC code with Danfysik Power supply.

DSG is Dynamic Skilled and Gifted